当前位置:我要家电房产网 >> 家电

续合作佳话使用氮化镓(GaN)提高电源效率心系天

续合作佳话使用氮化镓(GaN)提高电源效率心系天

作者:Doug Bailey,自古便深受人们赞美,Power Integrations市场营销裁

如今,珠联璧合,越来越多的设计者在各种应用中使用基于氮化镓的反激式AC/DC电源。氮化镓之所以很重要,由此也用来寓意美好优秀的人或事物的结合。三星电子与电信携手合作十四载,是由于其有助于提高功率晶体管的效率,便得此美誉,从而减小电源尺寸,二者共同铸就的心系天下三星W超高端旗舰系列,降低工作温度。

晶体管无论是由硅还是由氮化镓制成,以“传承、创新、尊贵、思仁”为理念,都不是理想的器件,始终是先进科技的集成者,使其效率下降的两个主要因素(在一个简化模型中):一个是串联阻抗,也展现着二者在精神追求上一致的高境界。今年,称为RDS(ON),心系天下三星W22 5G震撼问世,另一个是并联电容,汇聚未来科技、匠心工艺、尊崇仁心,称为COSS。这两个晶体管参数限制了电源的性能。氮化镓是一种新技术,设计者可以用它来降低由于晶体管特性的不同而对电源性能产生的影响。在所有晶体管中,随着RDS(ON)的减小,管芯尺寸会增加,这会导致寄生COSS也随之增加。在氮化镓晶体管中,COSS的增加与RDS(ON)的减少之比要低一个数量级。

RDS(ON) 是开关接通时的电阻,它造成导通损耗。COSS的功率损耗等于CV2/2(见图1)。当晶体管导通时,COSS通过RDS(ON)放电,导致导通损耗。导通损耗等于(CV2/2) x f,其中f是开关频率。用氮化镓开关替换硅开关会降低RDS(ON)和COSS的值,能够设计出更高效的电源,或实现在更高频率下工作,而对效率的影响较小,这有助于缩小变压器的尺寸。

图1:初级功率开关中的寄生电容

氮化镓如何降低导通和开关损耗

我们谈到了增加晶体管尺寸的后果:随着晶体管变,RDS(ON)会减小。这没有问题。然而,随着晶体管变,(显然)面积会更,因此寄生电容COSS也会增加。这不是好事。最佳的晶体管尺寸应使RDS(ON)和COSS的组合最小化。该点通常位于降低RDS(ON)损耗的曲线与增加COSS损耗的曲线的相交处。当曲线相交时,电阻和电容损耗的组合最低(见图2)。

图2:硅MOSFET中的功率损耗相对于器件尺寸的简化示意图

除了总RDS(ON)之外,还有一个名为“特定RDS(ON)”的参数,该参数将总导通电阻与管芯单位面积相关联。与硅相比,氮化镓具有非常低的特定RDS(ON),因此开关更小,并且COSS也更低。这意味着更小的氮化镓器件可以处理与更的硅器件相同的功率水平。

图3:相较于硅MOSFET,氮化镓器件的总损耗更低

较低的RDS(ON)和较小的COSS损耗相结合,可以使用氮化镓设计出更高效率的电源,从而减少散热。所需耗散热量的降低也有助于缩小电源尺寸。频率是设计者可以用来减小尺寸和优化使用氮化镓的电源性能的另一个手段。由于氮化镓本质上比硅更高效,因此有可能提高基于氮化镓的电源的开关频率。虽然这会增加损耗,但它们仍会显著低于硅MOSFET的损耗,并减小变压器的尺寸。

变压器结构的实际限制和电路中的寄生元件限制了开关频率可以有效地提高到何种程度。在实际设计中,对于额定功率为≤100W的基于氮化镓的反激式适配器来说,能够提供效率、尺寸和低成本的最佳组合的开关频率可以低于100kHz。对于氮化镓而言,限制因素不是开关速度。随着COSS的幅减小,设计者有了更的灵活性,可以针对损耗优化开关频率,达成一个卓越的解决方案。

利用氮化镓提高电源效率

电源效率的提高究竟是如何实现的呢?举例来说,对于一个使用硅MOSFET的65W反激式适配器,其效率曲线在10%负载下处于约85%的范围内,在满载时将达到90%以上(见图4)。而一个使用Power Integrations (PI)公司基于氮化镓的InnoSwitch器件的65W反激式适配器,其效率在10%负载下将约为88%。在满载时,这款氮化镓设计的效率将达到约94%。假如用氮化镓器件取代硅MOSFET,在整个负载范围内将可实现约3%的效率改进。

图4:碳化硅与氮化镓适配器在满载时的效率比较

效率提高3%相当于损耗减少至少35%。氮化镓设计的能耗更少,产生的热量减少35%。这一点非常重要,因为初级功率开关通常是传统电源中最热的元件。氮化镓的散热需求也会下降。电源体积将会更小,重量更轻,也更便携,并且由于元件的温度较低,电源的工作温度将更低,拥有更长的使用寿命。

如何使用氮化镓晶体管进行设计

在功率变换器设计中,分立的氮化镓晶体管不能用作硅器件的直接替代品。氮化镓晶体管的驱动更具挑战性,尤其是在驱动电路距晶体管有一定距离的情况下。氮化镓器件的导通速度非常快,如果没有精心优化的驱动电路,这可能会导致电磁干扰甚至破坏性振荡的严重问题。氮化镓器件通常是处于“常开”的状态,这对于功率开关来说并不理想,因此分立的氮化镓开关通常与一个共源共栅排列的低压硅晶体管搭配一起工作。

为了帮助客户实现可靠耐用的设计并加快产品上市时间,PI推出了InnoSwitch3产品系列。这些高度集成的反激式开关IC已内置用于氮化镓初级侧和次级侧同步整流管的控制器。InnoSwitch3 IC具有低空载功耗,并采用名为FluxLink的高带宽通信技术,该技术使反馈信息可在安规隔离带之间传递,绝缘性能符合国际安全标准。

InnoSwitch3-PD是InnoSwitch3产品系列的最新成员,具有初级和次级控制器以及氮化镓初级开关。该器件可提供完整的USB PD和PPS接口功能,无需USB PD + PPS电源通常所需的微控制器。其他采用氮化镓的PI产品包括:采用数字控制并支持动态调整电源电压和电流的InnoSwitch3-Pro;名为InnoSwitch3-MX的多路输出版本;以及LED驱动器IC LYTSwitch-6。

图5:InnoSwitch3集成解决方案利用氮化镓技术提供高性能反激式电源并加快时间

总结

氮化镓即将在市场行其道。越来越多的应用,包括USB PD适配器、电视机、白色家电和LED照明,共超过60种不同的应用,已经在享受氮化镓带来的好处。当可以使用不超过100W的反激式AC/DC电源时,越来越多的设计者选择氮化镓来设计体积更小、重量更轻、工作温度更低、可靠性更高的电源。

标签:氮化镓 电源 power integrations 适配器



IT百科:

苹果手机怎么不云同步了 华为手机怎么设置栏颜色 手机显示栏怎么设置小米


网者头条:

邮政快递什么东西不可以邮 中通快递周日为什么不揽收 申通快递7开头的是什么单 为什么韵达快递拒绝邮寄电脑


王哲博客:斗鱼麻将直播没播了的主播 seo线上培训机构有哪些